An LLT-type algorithm for computing higher-level canonical bases

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An LLT-type algorithm for computing higher-level canonical bases

We give a fast algorithm for computing the canonical basis of an irreducible highest-weight module for Uq(ŝle), generalising the LLT algorithm.

متن کامل

A new algorithm for computing SAGBI bases up to an arbitrary degree

We present a new algorithm for computing a SAGBI basis up to an arbitrary degree for a subalgebra generated by a set of homogeneous polynomials. Our idea is based on linear algebra methods which cause a low level of complexity and computational cost. We then use it to solve the membership problem in subalgebras.

متن کامل

Canonical bases of higher-level q-deformed Fock spaces

We define canonical bases of the higher-level q-deformed Fock space modules of the affine Lie algebra sl n generalizing the result of Leclerc and Thibon for the case of level 1. We express the transition matrices between the canonical bases and the natural bases of the Fock spaces in terms of certain affine Kazhdan-Lusztig polynomials. Leclerc and Thibon defined, in [6], a canonical basis of th...

متن کامل

An Efficient Algorithm for Computing Gröbner Bases for Confidentiality Problems

Diaconis and Sturmfels (1998) showed how the solution to this algebraic problem can be used to examine the set of tables having a fixed set of marginal sums. Thus finding a Gröbner basis has a very practical application in statistical data protection: If a database administrator publishes some seemingly non-sensitive marginal totals derived from a sensitive n-dimensional table, to what extent c...

متن کامل

A new algorithm for computing Groebner bases

Buchberger’s algorithm for computing Gröbner bases was introduced in 1965, and subsequently there have been extensive efforts in improving its efficiency. Major algorithms include F4 (Faugère 1999), XL (Courtois et al. 2000) and F5 (Faugère 2002). F5 is believed to be the fastest algorithm known in the literature. Most recently, Gao, Guan and Volny (2010) introduced an incremental algorithm (G2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2010

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2010.02.021